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The performances of five symbol-lock detectors are compared in this article.
These detectors are the square-law detector with overlapping (SQOD) and nonover-
lapping integrators, the absolute-value detectors with overlapping and nonoverlap-
ping integrators, and the signal-power estimator detector (SPED). The analysis
considers various scenarios in which the observation interval is much larger than or
equal to the symbol-synchronizer loop bandwidth, and which have not been con-
sidered in previous analyses. Also, the case of threshold setting in the absence of

signal is considered.

It is shown that the SQOD outperforms all others when the threshold is set in
the presence of a signal, independent of the relationship between loop bandwidth
and observation period. On the other hand, the SPED outperforms all others when
the threshold is set in the presence of noise only.

I. Introduction
The Advanced Receiver II (ARX II) and Block V Re-

ceiver currently under development [1] use phase-locked
loops (PLL’s) to track the carrier, subcarrier, and sym-
bol phase. Like most coherent receivers, the ARX 1I and
Block V rely on lock detectors to provide the lock status
of its PLL’s. Since carrier, subcarrier, and symbol syn-
chronization need to be achieved before any “meaningful”
symbol detection can be initiated, lock detectors play a
vital role in the final decision of accepting or rejecting the
detected symbols. During operation, a loop is assumed to
be locked when its lock indicator consistently has a posi-
tive status. The carrier and subcarrier lock detectors used
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in the ARX I and Block V Receiver have already been an-
alyzed [2,3]. This article analyzes five candidate symbol-
lock detectors for these receivers.

The detectors considered in this article are divided into
two groups. The detectors in the first group process the
outputs of two overlapping integrators, whereas those in
the second group use two contiguous outputs of a single
integrator. The first class contains two well-known lock
detectors that use either squaring or absolute-value oper-
ations on the integrator outputs. The second class con-
sists of three lock detectors, two of which use the same
mathematical operations as those in the first class, while



the third detector functions as a signal power estimator.
The five schemes are compared based on the lock-detection
probability as a function of the symbol SNR for a given
false-alarm probability and a fixed observation interval.

Although symbol-lock detection has been addressed be-
fore [4,5], the analyses have neglected the interdependence
between symbol synchronizer bandwidth and lock detec-
tor bandwidth. The symbol synchronizer bandwidth refers
to the one-sided loop noise bandwidth By of the digital
data-transition tracking loop [6] used in the ARX II and
Block V. The lock detector bandwidth is defined as the
frequency at which the lock detector provides a status,
being in- or out-of-lock. For example, the lock detectors
considered here indicate loop status once every M sym-
bols. Consequently, the bandwidth of these detectors is
1/(MT), where T is the symbol duration. The probability
of false alarm Py, is defined in two ways. In the classical
sense, it is defined as the probability of declaring a signal
(or target, as in radar applications) to be present when
it is not present. In deep space applications, however, it
is more appropriate to define Py, as the probability of
declaring a loop to be in-lock when it is out-of-lock. That
is, P, is the probability of declaring the timing error to
be “zero” (in-lock) when the loop is slipping cycles and
operating with a nonzero timing error (out-of-lock).

In Section 1V, the false alarm rate is shown to be dras-
tically different, depending on the definition used. In addi-
tion, when the loop is slipping cycles, the false alarm rate is
shown to depend strongly on the ratio of the lock detector
bandwidth to the symbol loop bandwidth. For example,
when the loop is slipping and 1/Br, < MT, the lock de-
tectors operate with acceptable false alarm rates because
there are several uncorrelated samples of the timing error
7 within the M T-sec decision interval. On the other hand,
when 1/Br > MT, the false alarm rates are unacceptable
because the timing error is constant over several decision
intervals (see Section IV). Note that a good rule of thumb
is to assume that the loop provides uncorrelated phase es-
timates every 1/Bj, sec. As a result, the symbol timing
error at time ¢; is uncorrelated with the symbol timing er-
ror at time t;, when |t; —¢;| > 1/B,. This article considers
the special cases of 1/B; = MT and 1/B; = T. The first
case 1s analyzed and simulated, whereas the second case
is simulated, but not analyzed. When the threshold is ad-
justed in the presence of noise only, the performance can
be derived from the previous analysis by setting the signal
amplitude to zero.

The description of the various lock detectors is pre-
sented in Section II. The general analysis and summary
of the theoretical results are presented in Section III. The

discussion of the theoretical, as well as the simulated, re-
sults is carried out in Section IV, followed by the conclu-
sion in Section V. In Appendices A through F, some of the
mathematical details are provided.

Il. Description of the Lock Detectors

Figure 1 is a block diagram showing the signal process-
ing functions common to the lock detectors surveyed in
this article. The received signal is assumed to have been
mixed with perfect carrier and subcarrier references so that
the input to the lock detectors is a baseband signal of the
form

r(t) = Ad(t) + n(t) (1)

where A is the signal amplitude and A? is the received
data power with

dt)="5" dip(t - kT) (2)

k=—o0

and where n(t) is the additive white Gaussian noise pro-
cess with a single-sided power spectral density (PSD) N
(watt/Hz). The data symbol d; takes on the value +1
equally likely, and p(2) is the received pulse shape of dura-
tion T sec. For comparison purposes, only the nonreturn-
to-zero pulse is considered in the analysis, but the results
can be extended to any pulse shape. The receiver is as-
sumed to have perfect knowledge of T, but not the sym-
bol epoch—i.e., the receiver has perfectly estimated the
symbol rate, but not necessarily the start and end of the
symbols.

The signal processing functions for the “lock detector”
block in Fig. 1 depend on the detector being implemented.
Its output Xy is at the symbol rate and, typically, many
samples of X} are averaged to obtain the decision statistic
Y. If Y is greater than the threshold &, the loop is declared
to be in-lock, otherwise it is declared to be out-of-lock.

The parameter 7 in Fig. 1 is the phase error between
the symbol phase and the phase estimate provided by the
symbol synchronizer. The in-lock case is analyzed by set-
ting the timing error 7 to zero. In practice, the error is not
identically zero, but it is a very small value. When there is
a signal present, the out-of-lock model for 7 depends on the
relation between By and 1/(MT). When By = 1/(MT),
7 is modelled as an unknown constant over a decision inter-
val (MT sec), but one that is independent and uniformly
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distributed from one decision interval to the next. Alter-
natively, when B = 1/7T, the timing error is modelled as
a constant over a symbol interval (T sec), but one that
is independent and uniformly distributed from symbol to
symbol. In this case, if the decision time MT > T (as it
usually is), each decision statistic encompasses the entire
range of 7. When there is no signal present, the model
of 7 is irrelevant because the out-of-lock performance is
independent of 7.

The detectors considered in this article are the square-
law detector with overlapping (SQOD) and nonoverlap-
ping (SQNOD) integrators, the absolute-value detectors
with overlapping (AVOD) and nonoverlapping (AVNOD)
integrators, and the signal-power estimator detector
(SPED). The SQOD is depicted in Fig. 2(a). The input
signal r(t) is integrated over two symbol periods: one in-
phase with the estimated symbol interval and the other
staggered by half a symbol duration. The resulting in-
phase and quadraphase samples I} and Q; are correlated
due to the overlapping intervals. The AVOD detector re-
places the squaring operations in Fig. 2(a) with absolute-
value operations. Hence, its I and @ samples are also
correlated. The SQNOD detector processes two contigu-
ous outputs of a single integrator, as shown in Fig. 2(b).
As before, replacing the squaring operations with absolute
values yields the detector’s counterpart, the AVNOD. The
integrator outputs in this case are uncorrelated because
the intervals are disjointed. The SPED detector is shown
in Fig. 2(c). The SPED detector is considered because it
is already part of the split-symbol moments’ symbol-to-
noise-ratio (SNR) estimator [7], the SNR estimator used
in the ARX II and Block V. The inphase and quadraphase
outputs of the SPED are obtained, respectively, by inte-
grating the received signal over the first and second halves
of a symbol. Since the noise in the first and second halves
are independent, taking the product of I and Q and av-
eraging over many symbols provides an estimate propor-
tional to signal power.

lll. Performance Analysis

The in-lock and out-of-lock performances of the lock
detectors are derived in this section. The in-lock perfor-
mance is measured in terms of the probability of declaring
the loop to be locked when there is no timing error—that
is, the probability that the decision statistic Y in Fig. 1 is
greater than the threshold § when 7 = 0. Note that r = 0
or no phase-tracking error is equivalent to setting the sym-
bol synchronizer loop SNR to infinity. The degradation in
detection probability due to timing jitter (a noninfinite
loop SNR) is minimal and has been addressed in the case

134

of carrier lock detectors [2]. The out-of-lock performance
is measured by the probability of false alarm—the prob-
ability of declaring the loop to be locked when it is not
locked. The out-of-lock performance in the presence of a
signal is analyzed for the case By, = 1/(MT). The sim-
ulation results for By = 1/T are presented in the next
section.

Note that when By = 1/7, the timing error is inde-
pendent from one symbol to the other, and the decision
Is made after averaging many, say M, symbols. On the
other hand, when By = 1/(MT), 7 is an unknown con-
stant during a decision interval, and is independent from
one decision to the next. Setting M = 1 in the latter
case would imply a decision for every symbol, which is
fundamentally different from the case where B; = 1T
and the decision is made by using M symbols. Hence, the
performance when By = 1/T cannot be derived from the
case of By = 1/(MT) simply by setting M = 1. The
out-of-lock performance when there is no signal present is
also analyzed. Only the final equations are shown with
the derivations detailed in the various appendices. In all
cases, the decision statistic can be expressed as

1 M
=H2Xk (3)
k=1

where the random variable X is peculiar to each detector.
When the timing offset 7 = 0, the adjacent samples X} and
Xk+1 are correlated in the first two detectors. Whereas for
the remaining three detectors, they are uncorrelated. In
all cases, the random variable X} is not Gaussian due to
the nonlinear operations on I; and Q. For large values
of M, the random variable Y is modelled as Gaussian due
to the central limit theorem (CLT). The theorem applies
to the sum of correlated random variables when none of
the variables being summed dominates over the others [8].
This model for Y is justified by simulation results.

The probability of lock detection is the probability that
the Gaussian random variable Y surpasses the threshold
6. Hence, it is given by

e[ ool e

where py and o are the mean and variance of Y when T is
exactly zero. By using the definition of the error function

erf(z) = %/OI exp(—t2)dt (5)



one has
1 1 6~ Hy
== ——erf
Pp 773 er ( ooy ) (6)
or
1 1 ) SNRp
PD_E_QHf(ﬁay 5 ) (7)
where SN Rp denotes the detector SNR defined by
2
SNRp 2 (”_Y) (8)
oy

The threshold § is chosen to maintain a fixed proba-
bility of false alarm. The probability of false alarm is the
probability that the out-of-lock decision statistics do not
surpass the threshold. Hence, it is given by

s
Pfa = [oo fo(y)dy (9)

where f,(y) is the out-of-lock density of Y. The threshold
8 is computed by solving Eq. (9) for a fixed P;,. When
there is a signal present and By = 1/(MT), the statistic
Y is no longer Gaussian and f,(y) must be obtained nu-
merically or by simulation, as shown in Section IV. When
there is no signal present, the CLT can be invoked and the
out-of-lock decision statistic can be modelled as Gaussian.
This model is verified by simulations in Section IV. In this
case, Eq. (9) can be written as

1 1 5—/Jy
Piy=—-—— — 0
Je =5~ 3 erf ( \/_2_0_),0 ) (10)

where gy, and oy, are the out-of-lock mean and variance
of the decision statistic Y. The threshold § is given by

§=V20y,7 + py, (11)

where ¥ = erf~!(1 — 2P;,). Substituting Eq. (11) into
Eq. (6) relates the probability of detection to the no-signal
(classical) false alarm rate, namely,

1 1 erf \/56}1,7 + Ky, — By (12)
2 2 \/Q‘O’Y

The next five subsections derive the in-lock and out-of-
lock mean and variance for all five schemes.

A. Square-Law Lock Detector With Overlapping
Intervals (SQOD)

The SQOD detector is shown in Fig. 2(a). For the input
given by Eq. (1), the inphase integrator output is given by

(k+1)T+71
Iy 2/ r(t)dt
kT+r

= dy A(T — 7) + dip1 AT + Ny (k) + Na(k)  (18)

and the quadraphase integrator output is given by

(k+3)T+7
Qr = / r{t)dt
(

E+3)T+r
(dA(LZ-7) +dpy AL +7)
J +No(k) + Ni(k + 1) 0<r<®
| A ) A (- B)
L +No(k) + Ni(k +1) L<r<r
(14)

where 7 is limited to the interval [0, 7], and where

(k+%)T+T
Nl(k)=/ n(t)dt (15)
(ET+7)
and
(k+1)T+7
Na(k) = / n(t)dt (16)
(E+3)T+r

Since n(t) is 2 white Gaussian process with one-sided PSD
N,, the N;’s are independent Gaussian random variables
with a mean of zero and a variance of 02 = (N,T)/4.
Summing M of the samples X; = I? — Q? yields Y. From
Appendix A, the in-lock mean and variance of Y are given
by

s NoT
py = 17—2— (17)

135



and

+2(M - 1) (—ﬂ—l)] (18)

The out-of-lock mean and variance, when there is a sig-
nal present and 7 is an unknown constant over a decision
interval By = 1/(MT), are given by

py, = 0.0 (19)

2 2
ol = (N"T) [M (31"’ 4 A ﬁ) +2(M - 1)

° M 120 24 4

23p2 23, 1 n;

where 7, denotes the symbol signal-to-noise ratio and is
defined as

AT
Ng

[I>

(21)

s

Setting A = 0 in Eq. (21) and substituting the result in
Eqs. (19) and (20) yields the out-of-lock mean and variance
in the no-signal case. Hence, the no-signal mean is zero,
but the no-signal variance is given by

ol (1, = 0) = (NA}T)Q [MZ'— —2(M - 1)-;-] (22)

B. Absolute-Value Lock Detector With Overlapping
Intervals (AVOD)

For the AVOD detector, Fig. 2(a) with absolute values
instead of squares, the expressions for I; and @y given by
Egs. (13) and (14) are still valid, but now X3 = || |Q«|.
From Appendix B, the in-lock mean and variance are given

by
py = (\/NTT ) (22 eitym)] 9
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of = #[M Var(Xy)+ M(M —1) Cov(Xk, Xr41)] (24)
where
Var(X) = (Vo) { 22 41 = malFi(n) + Fo(o)

—lexp(=20,) ~ 2exp(—ny) + 1] = Deerf? ()

g/ Zert/mlesp(-n) - 11} (26)

and

exp(—21) + exp(—1;)
2

COV(Xk,Xk+1) = (NUT) {

et (V) + [exp(on) + 3 [ert(v7D)

/- B+ E@l) o)

The out-of-lock mean and variance, when there is a signal
and 7 is constant over M symbols, are given by

sy, =0.0 (27)

oy, :%[M Var,(Xi) + 2(M — 1) Covo(Xe, Xkg1)
+ (M = 1)(M —2) Cov,o(Xi, Xrg2)] (28)

where

4n,
3

+1-7, [Z— L(7) + C1(ny)

Varo(Xk) :(NOT) {

+H1(na)+Hzé’k)+H3("s)]} (29)



-2 s . 1
COVO(X)C, Xk+1) = (NOT) {?%ﬂ-n_) + (% + g)

xerf? (/1) + exp(—1, Jerf(1/7;) <\/—Z:+ 8\/17I'T)

+ 2 1F5(n) + Ga(n.) + Ha(m) = Ga(n,) — Hs(n,)

-3 Rn) = Gulne) —26Ga(n) - 2Hz(m)]} (30)

NoTn,
COVO(Xk,Xk.H‘):( 0477

) [F3(ns) + G3a(n,) + Ha(n,)

— 2Ga(ns) ~ 2H5(773)] forj >2 (31)

The functions £, G, and H; in Egs. (28) through (31) are
defined in Appendix B and plotted versus 5, in Fig. B-1.
Setting n; = 0 in Eqs. (28) through (31) yields the out-of-

lock statistics in the no-signal case. The no-signal mean is
zero, but the variance is given by

o3 (1, =0) = (%22) [M +2(M - 1) (%)} (32)

C. Square-Law Lock Detector With Nonoverlapping
Intervals (SQNOD)

The SQNOD detector is shown in Fig. 2(b). For the
input of Eq. (1), The inphase and quadraphase integrator
outputs are given by

(k+3)T+7
Iy = / T‘(t)dt
(

k+5)T+r
de AL + N1 (k) 0<r<i
= ¢ A (L - 7) (33)

tdep A(r=T)+N(k) T<7r<T

and

(k+3)T+7
0 = / r(t)dt
(

k—)T+r

di1 A (=)
= +di A (L + 1) + Na(k)

dp &L + Ny(k)

The noises Ny(k) and N3(k) are given by Egs. (15) and
(16) after changing the integration limits to those in
Egs. (33) and (34). As a result, they are independent
Gaussian random variables with zero mean and variance
02 = (NoT)/4. The sample X is the difference of the
squares (i.e., X; = IZ — Q?). From Appendix D, the in-
lock mean and variance of Y are given by

s NoT
#Y:n—sL (35)
and
N2T? 2 4+ 24, + 16
2 _ 0 s s
G- (50) (PETE) w

For the case of false lock with the signal present and where
7 1s an unknown constant over M symbols, one obtains

py, = 0.0 (37)

and

- ()
Y, — M2

x [M ("2—+25—’7+—15) +M(M = 1) ”3] (38)

60 120

When there is no signal present, the out-of-lock mean is
zero and the variance is given by setting n, = 0 in Eq. (38).
Consequently, the no-signal out-of-lock variance is

oy, (n, = 0) = (NiT) (%) (39)

D. Absolute-Value Lock Detector With Disjoint
Intervals (AVNOD)
This detector is the same as the SQNOD with the

squaring operations replaced by absolute value operations.
Hence, Egs. (33) and (34) for I; and @y are valid, but now
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Xi = |Ix] — |Q&|. From Appendix E, the in-lock statistics
for Y are given by

Jon 7
and
o} = (NAGJT) {-3—;'—+% Si [l+5exp( ns)
o ( :

The out-of-lock mean and variance when there is a signal
present and 7 is an unknown constant over MT sec are

given by
ny, = 0.0 (42)
and

— 1) Covo(Xg, Xe41)]
(43)

1
0'%0 = W[M Vara(Xk) +M(M

Var,(X¢) = (NoT) [5% + 2= _?)_exp( ns)

2 4rm
2 ns 1+ 3n, s
o (F) (H52) -om (-

1 3
casstn Yo = o =g (1) o0 (-5)

o (B) ()

138

where the function Z is defined in Appendix E and plotted
in Fig. B-2. For the out-of-lock case with no signal, the
mean is zero and the variance is obtained by setting n, = 0
in Egs. (43) through (45). Hence, the out-of-lock variance
is given by

NoT (13
2 (gy=0)= oL (13
7y (1 = 0) = =7 (2 47r> (46)

E. Signal-Power Estimator Lock Detector (SPED)

This detector is shown in Fig. 2(c). Denote the inte-
grations over the first half of the assumed symbol interval
as Iy and the second half as Q. Then, the I; and @y
samples are given by

AT
Ik—dk—+N1(k) (47)
and

Qp = ded (Z - T> b dipAr+ No(k)  (48)

and X = I; Q. From Appendix F, the in-lock mean and
variance of Y are

s NoT'
py = B0 (49)
4
and
NZT? 2n, + 1
2 _ Q s
4= (%) (%) 0

The out-of-lock case with signal present has a mean and
variance, when T is constant over M symbols, given by

NoT
ny, = T (51)
and
NET? 512 4 20m, + 12
2 - Q 3 s M
o = 7 [M( 192 >+ (M 1)192]
(52)

As before, the out-of-lock variance in the no-signal case is
given by



o (n, = 0) = (“ ’ifz) (1—1925) (53)

IV. Discussion and Simulation Resulis

Digital simulation was used to verify the foregoing anal-
ysis. The first part of this section presents the results for
the long-time constant case or By = 1/(MT). Simula-
tion results for the short-time constant case or By = 1/7T
are presented in Subsection IV.B. The last subsection dis-
cusses the no-signal case.

A. Long-Time Constant, By = 1/(MT)

In the out-of-lock state, the symbol timing error 7 is
modelled as a constant over a decision interval (M T sec),
but it is independent and uniformly distributed over the
collection of all decision intervals. The timing error in the
in-lock state is modelled as being zero. Although the spe-
cial case where 7 is constant over M symbols was analyzed
for performance comparison purposes, it is not advisable
to operate a practical system under these conditions due
to unacceptable false alarm rates. This case has higher
than usual false alarm rates because the decision statis-
tic for small values of 7 is not significantly different from
the statistic for 7 = 0. As a result, the out-of-lock states
corresponding to small values of 7 are frequently declared
to be in-lock because they are mistaken for the case when
7 = 0. This problem can be ameliorated by lengthening
the observation time relative to the time constant of 7 (i.e.,
shortening the time constant of 7). In practice, it is rec-
ommended that the observation time be at least ten times
longer than the time constant of 7.

As noted in Section II, the out-of-lock density function
for Y in this case is not Gaussian. Consider the decision
statistic Y when the loop is out-of-lock and 7 is constant
over M symbols. In general, it can be written as

Xi = si(7) + ne + se(7)ng (54)

where (in all five cases) the signal term s is random and
uniformly distributed because 7 is a uniformly distributed
random variable. The density of the noise n; depends on
the detector being implemented. Summing M samples of
X (where X is at the symbol rate in all cases) yields
the decision variable Y. Since 7 is constant over the sum,
at a high SNR (i.e., for strong signal levels) the density
function of Y approaches a uniform distribution as shown
in Fig. 3(a). However, at a low SNR the noise term domi-
nates and the density of Y is Gaussian due to the central
limit theorem, as shown in Fig. 3(b). The density in Fig. 3

was obtained via numerical integration, as well as simula-
tion. Both methods are seen to agree very well. The nu-
merical method computed the density function of Y and
f(y), by averaging over 7 the conditional probability den-
sity function f(y/7). The latter is Gaussian with mean
and variance where both are functions of 7. The simula-
tion method computed the histogram of ¥ and then set
fly)=[Ply— A <Y <y+A)]/A, where A is the size of
a histogram bin. The histograms were generated by using
1,000,000 symbols, which corresponds to 10,000 decisions
(Y’s), since there are 100 symbols/decision.

Figure 4 compares the probability of detection perfor-
mance for all five detectors for M = 100 and Py, = 0.25.
Note that the overlapping detectors SQOD and AVOD,
which are identical except for the squaring and absolute
value operations, have nearly identical performances. As
expected, the AVOD is slightly better at a high SNR,
whereas the SQOD is slightly better at a low SNR. The
nonoverlapping detectors SQNOD and AVNOD also have
nearly equal performance. Once again, the absolute value
operation yields better results at higher SNR’s. The SPED
is better than the nonoverlapping detectors, but worse
than the overlapping detectors. The probability of de-
tection results in Fig. 4 change when P;, or M change.
For example, increasing the observation interval increases
the detection probability because it increases the detector
SNR (u /o%). Accepting a higher false alarm rate in-
creases the probability of detection because it lowers the
threshold 8. In generating these curves, 50,000 symbols
were simulated for each value of SNR. Since there are
100 symbols/decision, the detection probability for a given
SNR is based on 500 decisions.

B. Short-Time Constant, By = 1/T

Here, for the out-of-lock state, the symbol timing error
7 is modelled as a uniformly distributed random variable
that changes independently from symbol to symbol. For
this case, the probabilities of detection for all five detectors
are computed by simulation for M = 100 and Pj, = 1072,
and the threshold § is set according to Eq. (11). The false
alarm rate was verified by simulation. The results are
plotted versus the symbol energy-to-noise ratio 7, in Fig. 5.
In these computer simulations, the detection probability
for a given SNR is based on 40,000 decisions.

The results show that the AVOD performs slightly bet-
ter than SQOD at a high SNR, whereas the AVOD and
SQOD seem to perform identically at a low SNR. The
nonoverlapping detectors SQNOD and AVNOD also have
nearly equal performance at a low SNR, but AVNOD per-
forms about 1 dB better for values of the symbol SNR
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higher than —4 dB. The SPED performs about 2 dB worse
than the overlapping detectors and 3 dB better than the
other two nonoverlapping detectors.

Also by simulation, the false-alarm rate that was used
in setting the threshold was verified.

C. No-Signal Case

This scenario distinguishes between the case when there
is no signal and when there is a signal and 7 = 0.
Clearly, the out-of-lock statistic is Gaussian with a zero
mean, and the in-lock statistic is Gaussian with a nonzero
mean. Probability of detection results are compared in
Fig. 6. Interestingly, the performances of the overlapping
and nonoverlapping schemes are grouped together, but the
SPED now has the best performance. The interdepen-
dence among Pp, Pja, and M is the same as in the other
two cases.

V. Conclusion

The performances of five symbol lock detectors are com-
pared in this article. These detectors are the square-law
detector with overlapping and nonoverlapping integrators,
the absolute value detectors with overlapping and nonover-
lapping integrators, and the signal-power estimator detec-
tor. The analysis considered various scenarios in which
the observation interval is much larger than or equal to
the symbol synchronizer loop bandwidth, and which have
not been considered in previous analyses. Also, the case of
threshold setting in the absence of signal was considered.

It is shown that the SQOD outperforms all others when
the threshold is set in the presence of signal, independent
of the relationship between loop bandwidth and observa-
tion period. On the other hand, the SPED outperforms
all others when the threshold is set in the presence of noise
only.
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Appendix A
Derivation of the Mean and Variance of the SQOD

The inphase and quadraphase integrator outputs are given by Eqgs. (13) and (14), respectively. The output of the
lock detector Xx = I? — Q2. Consequently,

ue = E{IF) — £{Q3) (A-1)
where p. = E{X}.
Var(Xy) = E{[If - Qi)*} - £2{I} - Q}}
= E{I} + Qx — 2IQ%} — ik (A-2)
The covariance of Xj with Xy4; is
Cov(Xi, Xe+j) = EUIF i} + E{QRQRL; } — E{IEQR4 ;) — E{IE4; Q%) — prpeq; (A-3)

When the loop is in lock, Eqs. (A-1) through (A-3) are evaluated with 7 set to zero in Egs. (A-10) through (A-18).
Hence, the in-lock moments of X are given by

AT

Var(X;) = Tt 842T%02 + 120} (A-4)
and
Cov(Xg, Xg41) = —24°T%02 — 252 (A-5)
and for j > 2, this can be shown to be
Cov(Xk, Xipyj) =0 (A-6)

When the loop is out-of-lock, 7 is modelled as a uniform random variable. Using this model for 7 in Eqs. (A-10)
through (A-18) and substituting the results into Egs. (A-1) through (A-3) give the out-of-lock moments of X;. Namely,
(where the additional subscript o denotes out-of-lock),

31ATY 41
Var (I — Qi) = T FAZTzaf, + 120} (A-7)
23A%TY 23 , ., 4
COVO(Xk,Xk+]) = W —_ EA T g, — 2011 (A—S)

and for j > 2, this can be shown to be
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AT

COVO(Xk, Xk+j) = T (A—Q)
The following equations were used to compute the variance of X and covariance of X} with Xkt1:
E{I}Y = AX(T? = 2TE{r} + 2E{r?}) + 202 (A-10)
AYZE {1} + 26, {r?}) + 2026 {1} 0<r<Z
£{Q}) = 2 (A-11)
AN(ELE {1} — 4T EA{ 7} + 26{r?}) + 2025,{1} L <r<T

E{I}} = ANT* — AT3E{r} + 12T°E {77} — 16TE{r3} + 8E{r*}) + A%62(12T?% — 24TE{r} + 24E{r%}) + 1207

(A-12)
ANTIE 1) + 86 {r))
+A202(6T?E {1} + 246, {r?}) + 1202, {1) 0<r<i
E{Qr) = \ (A-13)
AN £,{1} — 32T3&, {7} + 48T2E,{1%} — 32T &, {73} + 8&,{r*})
+A%02(30T2E {1} — 48T Eo {7} + 24E2{7%}) + 1202&,{1}) L<r<r
((ANTIE {1} + 2726, {72} — 8TE {3} + 861 {r*})
+A%02(5T2E, {1} — 8TE {7} + 16E,{r%}) + 601£,{1) 0<r<Z
E{I}Q7) = (A-14)

AN E {1} — 9T3E, {7} + 15T2E {72} — 12TE, {73} + 46,{r%})

+A2GL(TT?E{1} — 6TE{T} + 4E2{7%}) + 602 E,{1} L<r<r

AYLLE {1} + 2726, {72} + 4&,{7*})

+A202(2T%6, {1} + 86, {7?}) + 402 £, {1} 0<r<Z
E{QEQin} = 4 (A-16)
ANELE,{1} — 20738, {7} + 26T2E,{1%} — 16TEA{73} + 4&,{r*})

+A%202(10T%E: {1} — 16T E {7} + 8E{72}) + 4028, {1}) L<r<r
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ANTRE{L} = TPE1 {7} + 3T2E, {2} — 4TE {3} + 46, {r*})

+A%02(3T26, {1} — ATE {7} + 861 {r?}) + 402 £, {1} 0<r<?
g{IleZ+1} =< .
ANERE{1)} - 9T3E {1} + 15726, {1?} — 12TE{r%} + 4&6,{r*})

+A?GA(TT?E2{1} — 12T E{T) + 8E{7?}) + 402 £, {1} L<r<r

ANGEE {1} — T3, {1} + 3726, {r2)} — 4TE {73} + 46, {r*})

+A20§(5T2£1{1} - 2T¢€1{T} + 451{T2}) -+ 60:81{1} 0<r< %
£{1§+1Qi} = 9 . R 2
A& {1} = B8 {1} + L6 {2) — 15TE {3} + 5E{r*))

+A202(13T26,{1} — 24T & {1} + 16E,{r2}) + 602 E,{1} L<r<r

where, in the above equations

T
E{f(r)} 2 /0 f(2)p(r)dr
E4f(r)} 2 / " f(r)p(r)dr

T
&2 [ srpryar

where p(7) is the probabilty density function of the variable r.
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Appendix B
Derivation of the Mean and Variance of the AVOD

Note that the calculations in this appendix incorportate the results of Appendix C. The inphase and quadraphase
outputs are given, respectively, by Egs. (13) and (14). The lock detector output Xy = |I|—|Qk|. Let pp = E{|Ix|—1Qx|}.

Then,
Var(Xi) = E{[|Ie] = |Qi])*} — 4

= E{I} + Qi — 2L Qx[} — 1} (B-1)

and

Cov( Xk, Xe4;) = E{UTe| — 1Qk| — sl k5] — 1Qr45] — s}

=E{Le iy} + E{IQr Qiaj 1} — E L Quas 1} — E{ ks ; @i} — Hibtky; (B-2)

The following equations were used to compute the variance of X; and the covariance of X} with Xy ;:

LHELIAT — 247+ N|} — & {247 + N|}] 0<T<

E{Xe} = (B-3)
{ LEAJAT — 247+<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>